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Figure 1. We report (left) memory and FLOPs for upsampling an 256 × 256 image by different scale factors (2×,3×,4×) using integer
scale upsamplers (Sub-Pixel Convolution [31] and CUF-instantiated) and arbitrary-scale upsamplers (Meta-SR [16], LIIF [6], LTE [19]
and CUF), but the same encoder backbone (EDSR-baseline [21]); and (right) the relationship between each upsampler FLOPS and PSNR
performance on DIV2k dataset. Our arbitrary scale model is significantly lighter than other methods in the same class (i.e. continuous
super-res). Further, when instantiated for integer scale factors, our upsampler is even-more efficient than sub-pixel convolutions [31].

Abstract

Neural fields have rapidly been adopted for represent-
ing 3D signals, but their application to more classical 2D
image-processing has been relatively limited. In this pa-
per, we consider one of the most important operations in
image processing: upsampling. In deep learning, learnable
upsampling layers have extensively been used for single im-
age super-resolution. We propose to parameterize upsam-
pling kernels as neural fields. This parameterization leads
to a compact architecture that obtains a 40-fold reduction in
the number of parameters when compared with competing
arbitrary-scale super-resolution architectures. When up-
sampling images of size 256x256 we show that our archi-
tecture is 2x-10x more efficient than competing arbitrary-
scale super-resolution architectures, and more efficient than
sub-pixel convolutions when instantiated to a single-scale
model. In the general setting, these gains grow polynomi-
ally with the square of the target scale. We validate our
method on standard benchmarks showing such efficiency
gains can be achieved without sacrifices in super-resolution
performance. https://cuf-paper.github.io

1. Introduction
Neural-fields represent signals with coordinate-based

neural-networks. They have found application in a multi-
tude of areas including 3D reconstruction [24], novel-view
synthesis [32], convolutions [14], and many others [37].

Recent research has investigated the use of neural fields
in the context of single image super-resolution [6, 19].1

These models are based on multi-layer perceptrons con-
ditioned on latent representation produced by encoders2.
While such architectures allow for continuous-scale super-
resolution, they require the execution of a conditional neural
field for every pixel at the target resolution, making them
unsuitable in applications with limited computational re-
sources. Further, such a large use of resources is not justi-
fied by a increase in performance compared to classical con-
volutional architectures such as sub-pixel convolutions [31].
In summary, neural fields have not yet found widespread
adoption as classical solutions are 1© trivial to implement
and 2© more efficient. As they generally perform compa-

1Thereon we assume single image when talking about super-resolution.
2These encoders were originally proposed for classical super-resolution

applications, and include both convolutional [8, 21, 40] as well as atten-
tional [7, 20, 39] architectures.

1

https://cuf-paper.github.io


rably, their usage is not justified in light of these points;
see Figure 1. In this paper, we focus on overcoming these
limitations, while noting that (regressive) super-resolution
performance is in the saturation regime (i.e. further im-
provements in image quality seem unlikely without relying
on generative modeling [30], and small improvements in
PSNR do not necessarily correlate with image quality).

Our driving hypothesis is that super-resolution convolu-
tional filters are highly correlated – both spatially, as well as
across scales. Hence, representing such filters in the latent
space of a conditional neural field can effectively capture
and compress such correlations. Given that neural fields en-
code continuous functions within neural networks, we call
our filters Continuous Upsampling Filters (CUFs). While
neural fields have proven effective in parameterizing 3D
convolutions [5, 14, 36], we demonstrate that there are very
significant savings to be had in the parameterization of 2D
convolutions.

In implementing continuous upsampling filters, we draw
inspiration from sub-pixel convolutions [31], and realize
them via depth-wise convolutions. This not only makes
CUFs significantly more efficient than competing continu-
ous super-resolution architectures, but when instantiated to
single-image super-resolution they are, surprisingly, even
more efficient than “ad-hoc” sub-pixel convolutions with
same number of input and output channels; see Figure 1.

Contributions. We investigate the use of neural fields as
a parameterization of convolutional upsampling layers in
super-resolution architectures, and show how:
• The continuity of neural-fields leads to training of com-

pact convolutional architecture for continuous super-
resolution (similar super-resolution PSNR but with flop
reduction that grows polynomially with the square of the
target scale.).

• Instantiating our continuous kernels into their discrete
counterpart leads to an efficient inference pipeline, even
more efficient in number of operations per target pixel
than ad-hoc sub-pixel convolutions with same number of
input and output channels.

• Discrete cosine transforms can be used as an efficient re-
placement for Fourier bases in the implementation of po-
sitional encoding for neural fields.

• These gains do not hinder reconstruction performance
(PSNR), by carefully validating our method on standard
benchmarks, and thoroughly ablating our design choices.

2. Related work
A thorough coverage of single-image super-resolution

can be found in the following surveys [2, 3, 35]; in what
follows, we provide an overview of classical techniques for
super-resolution based on deep learning. As our model is
based on neural-fields, we also point the reader to a survey
in this topic [37], and below we discuss the existing works

Figure 2. Previous Architectures – A visual comparison of the
super-resolution architectures of Meta-SR [16], local implicit im-
age function LIIF [6], and local texture estimators (LTE) [19],
shown in an isotropic scaling configuration. Components inside
the “2×2 Ensemble” box are computed over the four closest pixels
to compute a weighted average. The number of encoder channels,
Ce, is dependent on the encoder chosen.

for super-resolution based on neural fields.

Single scale. There are two main frameworks for super-res,
which mainly differ in the placement of upsampling opera-
tors within the architecture.
• In the pre-upsampling framework [8], an initial upscaled

image is obtained using a non-trainable upsampler (e.g.
bicubic), which is then post-processed by a neural net-
work. This enables arbitrary size/scaling, but can intro-
duce side effects such as noise amplification and blurring.

• In the post-upsampling framework [31], an encoder that
preserves the input spatial resolution is followed by a
shallow upsampling component.

Note the computational complexity of pre-upsampling is
significant, as these model operate directly at the target
resolution. Consequently, post-upsampling is the de-facto
mainstream approach [9, 20, 21, 34, 39, 40]. For this reason,
we investigate the impact of an implicit upsampler in post-
upsampling frameworks, and cover a diverse set of archi-
tectures ranging from large [22], to extremely lightweight
models [10].

Neural Fields. The application of neural fields to super-
resolution [16] has enabled the design of architectures that
support multiple target scales, as well as non-integer super-
resolution scales.
• In meta super-resolution MetaSR [16], a hyper-network

is conditioned on the target scale factor and on the out-
put pixel relative coordinates (ie. the difference between
source and target grids covering the same normalized
global space). Their model consists of: (1) transform-
ing the input image using an encoder into deep features
at the source resolution; (2) upsampling the deep features
into the target space (using nearest-neighbors); (3) using
the hyper-network to produce a filter set per target rela-
tive position and scale; (4) processing the enlarged target
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Hyper Network Upsampler
input #layers // #neurons output params (K) input layers neurons params (K)

Meta-SR [16] [δs(x), 1/s] 2 // 256 64× 9× 3 445 Eθ convolution – –
LIIF [6] – – – – [Eθ, δs(x), 1/s] 5 dense 256 347
LTE [19] – – – – ha(Eθ){sin, cos}(δs(x)π(hb(Eθ) + hc(1/s)) 4 dense 256 494
Ours: [Π(δs(x)),Π(s),Π(k)] 4 // 32 64 6 Eθ d-w conv. + 2 dense 64 4

Table 1. Super-resolution with neural-fields: An overview of the main characteristics of neural field based architectures. Square brackets
represent concatenation. In LTE [19], ha,hb are 3× 3 convolutional layers and hc is a linear layer.

Figure 3. Architecture – Continuous Upsampling Filters (CUF)
are based on a hyper-network. For each pixel position in the high-
res space, the hyper-network is computed K2 times, once for each
position i, j of the upsampling kernel (batched in practice). This
can be reduced when upsampling with integer scales s, as is com-
mon in practice. The Hyper-network output is aggregated into a
tensor that is dot multiplied against the unfolded nearest-neighbor
interpolation, computing a depth-wise convolution with per-pixel
filters. The number of encoder channels, Ce, is dependent on the
encoder used. In our experiments, we set the number of hyper-
network channels, Ch = 32.

resolution feature map into the final output using the cor-
responding weights.

• In local implicit image function LIIF [6], the author elim-
inates the use of a hyper-network (MetaSR, step 3) by
extending the sampled target resolution features (step 2)
with extra channels representing the relative coordinates
and target scale. Their combined features are further pro-
cessed through a stack of five dense layers inspired by
the multi-layer perceptron (MLP) architecture typically
adopted as the end-to-end model in neural-fields formu-
lations.

• In local texture estimator LTE [19] the authors enhance
the features fed as input to the MLP layers. In their
model, the output of the encoder is processed by three
extra trainable layers associated with the amplitude, fre-
quency and phase of sin/cosine waves. The resulting pro-
jection in the target resolution layer is used as the input to
an MLP that stacks 4 fully-connected layers. In order to
further improve the results they also adopt a global skip

connection with a bilinear up-scaled version of the input
around the full model, such that the deep model focus
on the computation of the residual between to the closed
form approximation and the final result.

A visualization of these architectures can be found in Fig-
ure 2. In practice, LIIF and LTE also increase the number
of feature channels as their MLP layers have more neurons
(256) than the number of channels produced as the encoder
output (64 for encoders such as EDSR [21] and RDN [40]).
In contrast to these previous works, our upsampler:
• Moves the computational burden of arbitrary upsampling

into the continuous upsampler operator while reducing
the operations performed in the target resolution space,
preserving the number of channels produced by the deep
encoder (Table 1).

• Requires fewer operations than the single-scale sub-pixel
convolution in the most typical application case of up-
sampling an image by an integer scale factor, and pro-
ducing results of comparable quality.

• Adopts a neural-fields formulation that focuses the sen-
sitivity of our hyper-network to fine-grained changes in
the representation of scale and relative position (reduc-
ing spectral bias).

3. Method
Given a target scale s, we aim to produce an up-

scaled image of size sH×sW×3 given an input image of
size H×W×3. Within the context of super-resolution, our
core contribution is the introduction of a novel learnable
upsampling layer. The upsampling layer can be interpreted
as a decoder in a classical encoder-decoder architecture. We
briefly review our encoder architecture in Section 3.1, and
detail our decoder in Section 3.2. Note that our analysis
focuses on the decoder, as a variety of encoders can be
used. In Section 3.4, we then perform a conceptual com-
parison between our architecture, shown in Figure 3, and
others based on neural fields, which are visually summa-
rized in Figure 2.

Training. Our network with parameters θ is trained to
regress a high resolution image Ĩs matching the ground
truth Ĩsgt at random positions x given the low resolution in-
put image I:

arg min
θ

EI Es Ex ‖Ĩs(x; I,θ)− Ĩsgt(x)‖12 (1)
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×1×1.5×2 ×2.5 ×3 ×3.5 ×4 ×4.5 ×5

Figure 4. Continuous super-resolution – Our architecture di-
rectly allows for an arbitrary and continuous choice of the super-
resolution factor. Conversely, traditional methods perform this in-
directly: they need to upsample to an integer factor, and then con-
sequently downsample to the target resolution. More examples are
available in the appendix. Note that ×4.5 and ×5 are upsampling
factors not available in the training data.

all filters filter #2 - continuous filter #2 - discretized

Figure 5. Continuous filters – CUF filters are continuous func-
tions stored in neural fields. We visualize our filters by densely
sampling each on the [0, 1]2 domain to highlight their continuous
nature (left). Close-up of an exemplar filter (middle). Filters are
discretized by sampling at pixel centers (right), allowing them to
be used in classical fixed-scale super-res architectures.

3.1. Encoder

Towards this objective, we first process our input image
with an encoder producing C-dimensional features:

Eθ : RH×W×3 → RH×W×C (2)

and then unfold a k×k spatial neighborhood of C-
dimensional features into a tensor of C×k2 channels.
Finally, we upsample the encoded image using nearest-
neighbour interpolation. We define this step as:

U : RH×W×C → RsH×sW×C×k2

(3)

The unfolding part of this procedure leads to feature maps
that will allow us to implement depth-wise, spatial convo-
lutions as dot products, as is typically done for low-level
neural network implementations. We define this whole fea-
ture extraction procedure as:

F = U(Eθ(I)) (4)

3.2. Decoder – “Continuous Upsampling Filters”

We draw our inspiration from classical sub-pixel con-
volutions [31], and combine it with recent research that
apply neural fields for continuous super-resolution [6, 19].
Differently from these architectures, we achieve this ob-
jective by instantiating upsampling kernels K via hyper-

networks [13]. Our super-resolution network is alge-
braically expressed as:

Ĩs(x; I,θ) = Dθ(Kθ(δs(x); s) · F(bx/sc)) (5)

where x indexes pixel locations in the target resolution,
and δs(x)= mod (x, s)/s renders our convolutional filters
translation invariant, and the dot product implements a spa-
tial convolution. The network D is a point-wise layer that
maps (super-resolved) features back to RGB values:

Dθ : RC → R3 (6)

This is applied to a grid of coordinates of size
RsH×sW×C to get an image of size RsH×sW×3. The coor-
dinate x is continuous, henceKθ is a neural field parameter-
ization of a convolutional kernel mapping (continuous) spa-
tial offsets and (continuous) scales to convolutional weights:

Kθ : [0, 1]2 × R+ → RC×K2

(7)

Continuous kernel indexing. We can take our continu-
ous formulation a step further by introducing a continu-
ous parametrization of its kernel indexes ki, kj indexing our
K×K convolution weight entries. Thus, the hyper-network
representing the convolution field becomes:

K̂θ : [0, 1]2 × {0, . . . ,K − 1}2 × R+ → RC (8)

and Kθ can then be constructed by 9 invocations to K̂θ in
the case of a K=3, and K2 invocations in the general set-
ting. We useK=3 throughout the paper in order to facilitate
a direct comparison to pre-existing baseline models.

Equation (7) and Equation (8) are both valid ways of
generating spatial kernels. The first can be seen as a multi-
headed hypernetwork, while the second uses input condi-
tioning to generate the kernel values. We use the latter in
our experiments, as the layers of nonlinearities provide ad-
ditional expressiveness compared to the linear transforma-
tion used in the multi-headed version. A comparison be-
tween the two is presented in Appendix D.

3.3. Positional encoding

Naively representing signals with MLPs leads to “spec-
tral bias” [26]: the overall difficulty these networks have in
representing high-frequency signals. Hence we implement
Kθ as:

Kθ(δs(x), s, k) = MLP(Π(δs(x)),Π(s),Π(k)) (9)

where we apply positional encoding Π(·) to the MLP in-
puts. Several variants of positional encoding exist, includ-
ing Fourier [24] and random Fourier [32] variants. How-
ever, as we strive for efficiency, we take inspiration from
classical signal processing (e.g. JPEG) and instead employ
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Set5 Set14 BSD100 Urban100
Encoder Upsampler Ens. × 2 × 3 × 4 × 6 × 2 × 3 × 4 × 6 × 2 × 3 × 4 × 6 × 2 × 3 × 4 × 6

RDN fixed-scale [40] 38.24 34.71 32.47 - 34.01 30.57 28.81 - 32.34 29.26 27.72 - 32.89 28.80 26.61 -
MetaSR [16] 38.22 34.63 32.38 29.04 33.98 30.54 28.78 26.51 32.33 29.26 27.71 25.90 32.92 28.82 26.55 23.99
CUF (ours) 38.23 34.72 32.54 29.25 33.99 30.58 28.86 26.70 32.35 29.29 27.76 25.99 33.01 28.91 26.75 24.23
fixed-scale [40] +geo 38.30 34.78 32.61 - 34.10 30.67 28.92 - 32.40 29.33 27.75 - 33.09 29.00 26.82 -
LIIF [6] +loc 38.17 34.68 32.50 29.15 33.97 30.53 28.80 26.64 32.32 29.26 27.74 25.98 32.87 28.82 26.68 24.20
LTE [19] +loc 38.23 34.72 32.61 29.32 34.09 30.58 28.88 26.71 32.36 29.30 27.77 26.01 33.04 28.97 26.81 24.28
CUF (ours) +geo 38.28 34.80 32.63 29.27 34.08 30.65 28.92 26.74 32.39 29.33 27.80 26.03 33.16 29.05 26.87 24.32

SwinIR fixed-scale [31] 38.35 34.89 32.72 - 34.14 30.77 28.94 - 32.44 29.37 27.83 - 33.40 29.29 27.07 -
MetaSR [16] 38.26 34.77 32.47 29.09 34.14 30.66 28.85 26.58 32.39 29.31 27.75 25.94 33.29 29.12 26.76 24.16
CUF (ours) 38.34 34.88 32.80 29.53 34.29 30.79 29.02 26.85 32.45 29.38 27.85 26.09 33.54 29.45 27.24 24.62
fixed-scale [31] +geo 38.38 34.95 32.81 - 34.24 30.83 29.02 - 32.47 29.41 27.87 - 33.51 29.42 27.21 -
LIIF [6] +loc 38.28 34.87 32.73 29.46 34.14 30.75 28.98 26.82 32.39 29.34 27.84 26.07 33.36 29.33 27.15 24.59
LTE+lc [19] +loc 38.33 34.89 32.81 29.50 34.25 30.80 29.06 26.86 32.44 29.39 27.86 26.09 33.50 29.41 27.24 24.62
CUF (ours)+ +geo 38.38 34.92 32.83 29.57 34.33 30.84 29.05 26.91 32.47 29.40 27.88 26.11 33.65 29.55 27.32 24.69

Table 2. Out-of-domain evaluation – performance on datasets not seen during training. Metrics computed on the luminance channel in
the YCbCr color space, following previous work. Models using self-ensemble are marked with +geo and models using local self-ensemble

are marked with +loc. Legend: best 2nd best

Multi-scale up-sampling methods - DIV2k
Encoder Upsampler Ens. seen scales unseen scales

× 2 × 3 × 4 × 6 × 12 × 18

Bicubic 31.01 28.22 26.66 24.82 22.27 21.00
EDSR-b. Sub-pixel conv. 34.69 30.94 28.97 - – –

MetaSR 34.64 30.93 28.92 26.61 23.55 22.03
CUF (ours) 34.70 30.99 29.01 26.76 23.73 22.20
Sub-pixel conv. +geo 34.78 31.03 29.06 – – –
LIIF +loc 34.67 30.96 29.00 26.75 23.71 22.17
LTE +loc 34.72 31.02 29.04 26.81 23.78 22.23
CUF (ours) +geo 34.79 31.07 29.09 26.82 23.78 22.24

RDN Sub-pixel conv. 35.01 31.22 29.20 – – –
MetaSR 35.00 31.27 29.25 26.88 23.73 22.18
CUF (ours) 35.03 31.31 29.32 27.03 23.94 22.38
Sub-pixel conv. +geo 35.10 31.33 29.31 – – –
LIIF +loc 34.99 31.26 29.27 26.99 23.89 22.34
LTE +loc 35.04 31.32 29.33 27.04 23.95 22.40
CUF (ours) +geo 35.11 31.39 29.39 27.09 23.99 22.42

SwinIR Sub-pixel conv. 35.28 31.47 29.40 – – –
MetaSR 35.15 31.40 29.33 26.94 23.80 22.26
CUF (ours) 35.26 31.52 29.52 27.19 24.07 22.49
Sub-pixel conv. +geo 35.33 31.52 29.44 – – –
LIIF +loc 35.17 31.46 29.46 27.15 24.02 22.43
LTE +loc 35.24 31.50 29.51 27.20 24.09 22.50
CUF (ours) +geo 35.31 31.56 29.56 27.23 24.10 22.52

Table 3. In domain evaluation: tests on DIV2K’s validation sub-
set [25] on scales seen (2× – 4×) and unseen during training (6×
– 30×) . Metrics taken on the RGB space. Results taken using
geometric self-ensemble [21] are marked with ’+geo’ and local-

ensemble [6] with ’+loc’. Legend: best 2nd best

a cosine-only transformation. Given a scalar fn sampled
uniformly in the range [0, fmax], a scalar quantity z ∈ [0, 1]
is encoded as the (sorted) vector:

Π(z) =

{
cos

(
(2z + 1)fnπ

2

)}N

n=1

(10)

By eliminating the imaginary component from the Fourier
basis, we show in Section 4.3 how this reduces the number
of trainable parameters of the first hyper-network layer by
half, without affecting super-resolution quality.

3.4. Analysis

We now perform a conceptual comparison of our net-
work architecture to the commonly used Sub-Pixel Convo-
lution, as well as several super-resolution approaches based
on neural-fields. We further note how continuous upsam-

Figure 6. A simple illustration of periodic shuffling used in Sub-
Pixel Convolution.

pling filters can be instantiated to generate filters compati-
ble with Sub-Pixel Convolution.

Comparison to Sub-Pixel Convolution [31]. Sub-Pixel
Convolution is the most commonly used super-resolution
operator, especially when efficiency is critical. This is
achieved by initially employing an expansion convolution
that generates a feature map with s2Nout channels, where
Nout is a hyper parameter defining the target number of
channels of the Sub-Pixel Convolution operation. Next,
the periodic shuffling operator 3 re-arranges the channels
to produce a higher-resolution feature map (see Figure 6):

P : RH×W×C → RsH×sW×C/s2 (11)

Similar to (6), whenever Nout is chosen as different from
the number of output colors, the resulting feature map is
further projected by point-wise convolutions. Often,Nout is
taken as the same as the number of channels as produced by
the encoder E for architectures adopting Sub-Pixel Convo-
lution and targeting high quality results [20,21,40]. We note
that the Sub-Pixel Convolution design based on the expan-
sion convolution does not enforce spatial correlations be-
tween neighboring pixels (here we refer to neighborhood in
the output, high resolution, domain) and need to be learned
from training data. Conversely, these correlations are inher-
ently captured by our continuous convolutional filters.

Further, in the integer scale setup where hyper-networks
can be pre-instantiated, CUFs are computationally more ef-
ficient than sub-pixel convolutions whenever K2 + Nin +

3also called pixel-shuffle (PyTorch) or depth-to-space (TensorFlow).
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Nout < Nout ×K2 (in the worst case scenario) as the cost
associated with pre-computing the weights for a given in-
teger up-sampling scale can be neglected when compared
to the operations performed on the image grid (see Ap-
pendix E).

Comparisons to LIIF [6] and LTE [19]. In comparison to
these works, we make the main network shallower (1 depth-
wise continuous convolution and 2 dense layers) in order to
reduce the number of layers that operate at the target spa-
tial resolution and at the encoder’s channel resolution. At
the same time, our upsampler head is considerably lighter
than previous arbitrary scale methods, not only by the use
of a depth-wise convolution but also by keeping the same
number of channels produced by the features encoder in the
main network (Ce = 64, which results in dense layers 16×
cheaper than its LIIF and LTE counterparts using 256 neu-
rons). When performing non-integer upsampling, the costs
with processing the hyper-network layers are proportional
to the target image resolution, but still smaller than a single
dense layer of LIFF and LTE heads, due to the adoption of
a reduced number of channels (as Ch = 32, each of CUF’s
hypernetwork dense layers is 64× cheaper than LIIF and
LTE layers using 256 neurons).

Instantiating CUFs. At inference time, when targeting
an integer upscaling factor s, the hyper-network represent-
ing K can be queried to retrieve the weights correspond-
ing to s2 relative subpixel positions as an initialization step
during pre-processing. The retrieved weights are re-used
across all pixels taking advantage of the existent periodic-
ity. Thus, in the CUF-instantiated architecture the contin-
uous kernel is replaced at test time with a discrete depth-
wise convolution, followed by a pixel shuffling operation,
in contrast with the unfolding operator used in the regular,
fully continuous CUF described in this paper. Otherwise,
the architecture remains the same. The costs associated
with the hyper network at initialization can be neglected as
s2 << sH × sW . In this setting, our model becomes as
efficient as a sub-pixel-convolution architecture, while re-
taining the aforementioned continuous modeling properties
at training time.

4. Results
In this section we describe our experimental setup in

terms of backbone encoders and training/validation dataset,
perform careful comparisons to the state-of-the-art (Sec-
tion 4.1), and additional evaluation towards the implementa-
tion of lightweight super-res architectures (Section 4.2). We
conclude by performing a thorough ablation (Section 4.3).

Encoders. We apply CUFs to a variety of encoders, to both
show its generality, as well as its performance gains in a
variety of settings.
• A state-of-the-art encoder for super-res named SwinIR

Method Composition Parameters (in M)
encoder spc. 4×

RDN Convolutions 22.00 0.30
SwinT Conv. and Self-Attention 11.60 0.30
EDSR-baseline Convolutions 1.20 0.30
SwinT-lightweight Conv. and Self-Attention 0.90 0.03
ABPN Convolutions 0.03 0.03

Table 4. Encoders – Our experiments use CUF layers in com-
bination with various encoders differing in composition and size.
Parameter counts reflect the encoder size and the upsampling head
using a Sub-Pixel Convolution (spc) targeting 4× upsampling.

[20] based on Swin-transformers [22].
• Well-known convolution-based encoders, namely EDSR-

baseline [21] and Residual Dense Networks (RDN) [40].
• Architectures for lightweight and extremely lightweight

inference, respectively SwinT-lightweight [20] and
ABPN [10].

Table 4 contrasts the ablated encoders’ composition and
size. Hyperparameter settings can be found in the appendix.

Datasets. All models are trained using the DIV2K
dataset training subset (800k images), introduced at
the NTIRE 2017 Super Resolution Challenge [25]. Simi-
larly to previous works, each image is randomly cropped
20 times per epoch and augmented with random flips, and
90 degrees rotations. We report peak signal-to-noise ra-
tio (PSNR) results on the DIV2K validation set (100 im-
ages)4, in the RGB space. To understand the generalizabil-
ity of our experimental results, we test our models on addi-
tional well known datasets (Set5 [4] – 5 images; Set14 [38]
– 14 images; B100 [23] – 100 images; and Urban100 [17] –
100 images), in which, following previous works, PSNR is
measured in the YCbCr luminance channel.

Ensembling. Whenever demarked by ‘+geo’, results
incorporate the (commonly adopted) Geometric Self-
ensemble [21], where the results of rotated versions of the
input images are averaged at test time. LIIF and LTE re-
sults adopt Local Self-ensemble (‘+loc’), where the result
of applying the upsampler at 4 shifted grid points is aver-
aged, resulting in a ×4 increase in computational complex-
ity at training/test time. It may also introduce confound-
ing factors to the optimization process that invalidate direct
comparison to the fixed-scale upsamplers, as during back-
propagation the encoder gradients are averaged. In Ap-
pendix B we combine these models.

4.1. State-of-the-art comparisons

Table 2 and Table 3 show the quantitative comparisons,
while qualitative results can be observed in Figure 4, Fig-
ure 7 and Appendix F as well as on our supplementary
website https://cuf-paper.github.io/. Table 3

4The models we compare to also do not report results on the test-set,
which is no longer publicly available.
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Urban100 - #088 LR GT

SwinIR + LIIF × 4 SwinIR + LTE × 4 SwinIR + CUF × 4

B100 - #86016 LR GT

EDSR + LIIF × 3 EDSR + LTE × 3 EDSR + CUF × 3

Urban100 - #030 LR GT

EDSR + LIIF × 4 EDSR + LTE × 4 EDSR + CUF × 4

DIV2k - #853 LR GT

RDN + LIIF × 8 RDN + LTE × 8 RDN + CUF × 8

Figure 7. Qualitative evaluation – CUF combined with different encoders and upsampling scales.

contains in-domain results: models trained on DIV2k and
tested on DIV2k (train/test split), while Table 2 presents
out-of-domain results: models are trained on DIV2k, but
tested on different datasets. Note that upsampling ratios
larger than ×4 are not provided at training time. The mod-
els adopting sub-pixel convolutions are fixed-scale models,
that is, one model is trained per target scale and thus do not
generalize to unseen or fractional scales. On the remain-
ing rows we present results of arbitrary-scale upsamplers
(MetaSR [16], LIIF [6], LTE [19]), where a single model is
trained and tested across different upsampling ratios. Our
method is the first arbitrary-scale method to match (or sur-
pass) fixed-scale performance across all encoders in both
single-pass inference and self-ensemble scenarios.

4.2. Lightweight super-resolution

The encoders and upsamplers considered so far are
not designed to be run on devices with limited memory
and power. Running super-resolution algorithms on mo-
bile devices comes with unique challenges due to limited
RAM and non-efficient support for certain common opera-
tions [18]. The proposed CUF-based upsampler, in combi-
nation with a mobile-compatible encoder, can be effectively
used for upscaling on mobile devices.

To test the effectiveness of the CUFs, we adopt a
lightweight version of SwinIR (0.9M parameters) [20] as
well as one of the best performing super-lightweight archi-
tectures for mobile devices (30K parameters) [10] as the en-
coder. For the latter, the original architecture (Figure 8, left)
consists of a lightweight encoder and an upscaling module
consisting of a series of convolutions, ReLU’s, and a stan-
dard periodic shuffle layer. We replace this upscaling mod-

ule with a CUF-based one (Figure 8, right). With instanti-
ated CUFs, this means simply introducing a depthwise con-
volution followed by pointwise layers, where the weights
are output by the learned CUFs.

Table 5 illustrates that CUFs provide the same level of
accuracy while enabling continuous scale and efficient in-
ference. To our knowledge, this is the first mobile-friendly
continuous scale super-resolution architecture.

4.3. Ablations

We run several ablation experiments in order to analyze
the effects of various model choices. Here, we detail our

Figure 8. Architectures (lightweight) – The original ABPN [11]
single scale architecture (left) and our arbitrary-scale version using
the implicit upsampler (right). Note how the two consecutive 3×3
native convolutions are exchanged for a 3× 3 depth-wise implicit
convolution followed by point-wise layers.
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Multi scale up-sampling methods
Set5 Set14 BSD100 Urban100

Encoder Upsampler × 2 × 3 × 4 × 6 × 2 × 3 × 4 × 6 × 2 × 3 × 4 × 6 × 2 × 3 × 4 × 6

SwintIR-light [20] Sub-Pixel Conv. 38.11 34.54 32.35 – 33.83 30.53 28.76 – 32.27 29.19 27.68 – 32.56 28.58 26.48 –
CUF (ours) 38.17 34.62 32.46 29.09 33.93 30.57 28.83 26.61 32.30 29.23 27.71 25.95 32.73 28.68 26.55 24.11

ABPN [10] Sub-Pixel Conv. 37.30 33.39 31.11 – 32.90 29.68 27.97 – 31.67 28.64 27.14 – 30.37 26.77 24.96 –
CUF (ours) 37.35 33.55 31.31 28.06 32.96 29.74 28.04 25.86 31.72 28.69 27.19 25.52 30.53 26.92 25.05 23.01

Table 5. Lightweight super-res – Our CUFs enable continuous super-resolution with lightweight (SwinIR-lightweight [20]) and mobile-
friendly (ABPN [10]) backbones without quality loss.

2× 3× 4×
Fourier 30.45 26.85 25.00
DCT 30.44 26.86 25.00

Table 6. Cosine basis – matching results but using half of sinu-
soidal projections and neurons at the hyper-network input. PSNR
from Urban-100 dataset using a ABPN encoder.

choice of using DCT for positional encoding vs Fourier fea-
tures, as well as an investigation of the redundancy of CUF
filters versus subpixel convolution. An analysis on the vari-
ous conditioning factors of our neural fields (positional en-
coding, kernel indices, scale, and target subpixel) can be
found in the appendix.

Positional encoding. A large body of work uses a Fourier
basis for the positional encodings, e.g. [24, 33]. However,
we opt to use a DCT basis as this requires half of the si-
nusoidal projections and neurons at the hyper-network first
layer. This trick has been used in other domains, such as
random approximations of stationary kernel functions [27].
In Table 6 we show the PSNR, as obtained using a DFT ver-
sus a DCT basis, and verify that we do not observe loss in
performance, while at the same time saving half of the com-
putation associated with positional encoding operations.

Redundancy of filters. As noted in Section 3.4, sub-pixel
convolution does not enforce spatial correlation between
neighboring weights in its convolutional filters, but has to
learn them from data. CUF on the other hand generates
the filters with a hypernetwork, which intrinsically builds
on smoothness due to its functional form. Here, we test this
hypothesis on the filters of CUF and sub-pixel convolutions.
For this analysis, we use an EDSR encoder with Ce = 64,
K = 3× 3, and s = 3. Subpixel convolution maps Ce fea-
tures to s2Ce features, and each group of s2 output features
are rearranged to form the upscaled feature space. We there-
fore consider each group of s2 filters of size K ×K × Ce

(a) Subpixel Convolutions (b) CUF

Figure 9. CUF depthwise continuous filters are low rank by con-
struction. Subpixel-convolution fails to find low rank filters.

and do an eigenvalue analysis to determine the compress-
ibility of these filters. This is done by forming Ce separate
matrices of size s2 × CeK

2 and performing PCA on each
of them separately, forming 64 separate sets of eigenvalues.
We plot this distribution for trained and untrained sub-pixel
layers in Figure 9a. A faster decay means more redundancy,
as more variance is explained by fewer components. In this
case, training adds significant structure to the filters.

Conversely, each output channel in CUF is computed
by s2 filters of size K × K. These are not directly com-
parable to subpixel convolution, but we perform an anal-
ogous eigenvalue analysis on trained and untrained CUFs.
As shown in Figure 9b, unlike subpixel convolution, CUFs
actually become less redundant with training, suggesting
that the initial hypernetwork already imposes a very smooth
prior on the filters. In other words, CUF filters incorpo-
rate spatial correlations from the very beginning due to their
functional form.

5. Conclusions
We propose CUF, a computationally efficient modeling

of continuous upsampling filters as neural fields. Differ-
ent from previous arbitrary-scale architectures, the perfor-
mance gains obtained by our upsampler are not due to in-
creased capacity but rather to a more efficient use of model
parameters. A single hyper-network supports filter adap-
tation across scales while at the same time CUF’s upsam-
pling head has fewer parameters than previous arbitrary-
scale heads, as well as fewer parameters than a single Sub-
Pixel Convolution head at 4× upsampling. CUF is the first
arbitrary scale model that can be effectively used for up-
scaling on mobile devices, an area previously dominated by
single scale Sub-Pixel Convolution architectures. CUF’s
archtecture is quite general. A natural direction of future
work is to investigate its use for architectures with multiple
upsampling layers (and the reuse of filters across scales),
for different image generation settings such as GANs [12]
and diffusion models [15]. Neural fields have done partic-
ularly well on higher-dimensional signals. Another line of
future work is the use of CUF for efficient super-resolution
of video data. Overall, the presented results aligned with
low computational resources suggest CUF offers a practi-
cal modeling of continuous filters. Continuous convolution
filters are an exciting and increasingly studied area of re-
search [28, 29] with many applications as an alternative to
traditional convolutions.
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CUF: Continuous Upsampling Filters

Supplementary Material

A. Experiment details

Training Hyper-parameters. Table 7 contains the hyper-
parameters used for training the ablated models, taken from
their single-scale (Sub-Pixel Conv.) training settings. All
models are trained for 1K epochs with L1 loss and ADAM
optimizer by setting β1 = 0.9, β2 = 0.999, and ε = 1e−8.
We use a step-wise learning rate schedule that is halved at
epochs [500, 800, 900, 950]. Unless referred as single-scale,
models were trained with random scales by sampling the
scale factor uniformly within the continuous interval [1, 4].
In order to ensure that the dimensions within the training
mini-batch match despite heterogeneous scale factors, we
first scale each image as required and then apply the same
crop size to both LR and HR images, such that the HR ran-
dom crop contains 1/s2 of the content of the LR crop, and
fix the relative grid coordinates to point to the random sub-
region.

CUF’s hyper parameters. Table 8 describes the num-
ber of neurons used in the presented ablations across dif-
ferent encoders. Ce was chosen to replicate the original
number of output features of each encoder. CUF’s hyper-
parameters were obtained by grid search on the EDSR-
baseline and Set5 dataset and replicated on the remaining
encoders. CUF’s positional encoding hyper-parameters en-
force a small number of basis per input parameter. For
each input (represented in 2D space), the number of ba-
sis N2 was searched within the set {0, 12, 22, ..., 52} while
fmax within the set {0, 0.5, ..., 4.0} for Π(δs(x)) and Π(s),

Encoder Batch Crop Initial LR

EDSR-baseline [21] 16 48 1e−4

RDN [40] 16 48 1e−4

SWINIR [20] 32 48 2e−4

SWINIR-lightweight [20] 64 64 2e−4

ABPN [10] 16 64 1e−3

Table 7. Training hyper-parameters: replicate each encoder’s
original setting.

Encoder Ce Ch Params(K)

EDSR-baseline 64 32 10
RDN
SWINIR
SWINIR-lightweight 60 32 10
ABPN (k as input) 28 28 5
ABPN (k as output) 11

Table 8. CUF’s hyper-parameters: Ce chosen as each the en-
coder output features.

and within the set {0, 0.5, .., 3.0} for Π(k). The final posi-
tional encoding hyper-parameters adopted are Π(δs(x); ) :
{N2 = 25; fmax = 2.0}, Π(s) : {N2 = 25; fmax = 2.0}
and Π(k) : {N2 = 9; fmax = 1.0}.

B. On the use of ensemble

Multi-scale up-sampling methods - DIV2k
Encoder Upsampler Ens. seen scales unseen scales

× 2 × 3 × 4 × 6 × 12

EDSR-baseline [21] Sub-pixel conv. 34.69 30.94 28.97 – –
LIIF 34.63 30.95 28.97 26.72 23.66
LTE 34.63 30.99 29.01 26.77 23.74
CUF (ours) 34.70 30.99 29.01 26.76 23.73
Sub-pixel conv. +geo 34.78 31.03 29.06 – –
LIIF +geo 34.74 31.05 29.07 26.80 23.76
LTE +geo 34.72 31.07 29.08 26.83 23.79
CUF (ours) +geo 34.79 31.07 29.09 26.82 23.78

Table 9. Disentangling the effect of ensembling on optimiza-
tion: Models trained under same supervision (no ensemble),
and tested with (marked with +geo) and without geometric self-
ensemble. Results on DIV2K’s validation subset [25].

The baseline settings from LIIF [6] and LTE [19] include
locally ensembling pixels around the target sub-pixel, by
shifting by its position by half pixel in the low resolution
grid, and averaging their results. This procedure introduces
a training and inference overhead, as the sampled points
is increased by a factor of four. As a direct consequence,
during training models adopting local self-ensemble eval-
uate four times more gradients per optimization step. In
order to disentangle possible optimization side effects, in
this section we ablate the models LIIF and LTE under same
optimization conditions as other models, that is, no ensem-
ble is adopted during training, but on inference time only.
LTE presents a strong result on scales 3 and larger, but a
reduction in performance on scale 2, in which LIIF matches
or surpass its performance. Overall, this ablation confirms
the benefits from CUF as the lighter arbitrary scale upsam-
pler with strong performance under single pass and self-
ensemble settings, across both smaller and larger scales.

C. On the use of positional encoding

Figure 10 contains a comparison of CUF models trained
using the neural-fields parameters as raw values versus the
projection using positional encoding. The stronger impact
of using positional encoding is observed on ABPN encoder
(Figure 11) and Urban-100 dataset [17]. We note that the
content of this dataset is characterized by sharp straight
lines and geometric structures, thus the quantitative gain is
aligned with the expected behaviour.
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Figure 10. Impact of CUF’s positional encoding on different
datasets and encoders. Bar plots represent PSNR differences rel-
ative to baseline models adopting sub-pixel convolutions and cor-
responding encoder.

HR LR

LR crop w/o. pos. enc. with. pos. enc. GT (× 3)

LR crop w/o. pos enc with. pos enc GT (× 3)

Figure 11. Qualitative evaluation on mobile-compatible en-
coder – ABPN-CUF with and without positional encoding. But-
terfly image from Set5 dataset.

D. Conditioning on the kernel indexes

Figure 12 contains a comparison between representing
the kernel indexes ki, kj as input parameters to the neural-
fields versus representing their discrete set as individual
neurons at the output of the hyper-network. On the effi-
ciency side, setting them as the hyper-network output neu-
rons reduces memory and computation used, as hidden lay-
ers are shared. On the other hand, the layers of the hyper-
network and its nonlinearities provide additional expres-
siveness compared to the linear transformation used in the
multi-headed version. This additional expressiveness re-
sults in in performance improvement in stronger encoders
(RDN, SWINIR), but not on smaller ones (ABPN, EDSR).
Thus, we recommend conditioning on kernel indexes only
for those encoders that take advantage of it.

Figure 12. Comparison between conditioning the neural-fields
on the kernel indexes (ki, kj) versus its discretization at the
hyper-network output layer. Stronger encoders take advantage
of the hyper-network depth and non linearities. Bar plots represent
PSNR differences relative to baseline models adopting sub-pixel
convolutions and corresponding encoder.

E. Sub-Pixel Convolution vs. CUF-instantiated

In this section we compare the costs associated with Sub-
Pixel Convolution and CUF-instantiated upsampling heads.
The presented comparison contrasts their designs choices
based on full convolution (Sub-Pixel Convolution) versus
depthwise-pointwise decomposition (CUF). As unitary el-
ement of comparison we evaluate the number of multipli-
cations performed to produce a single output pixel. We as-
sume an input feature map with Cin channels, the resulting
image with Cout channels and that both Sub-Pixel Convo-
lution and CUF-instantiated adopt filters of same size K.

CUF-instantiated architecture is composed with a depth-
wise convolution and pointwise projections. Its three layers
perform respectively Cin ∗ k2, Cin ∗ Cin and Cin ∗ Cout

multiplications per output pixel.
Next, we cover two common compositions with Sub-

Pixel Convolution. The most common design for upsam-
pler heads targeting high quality results is to combine a
Sub-Pixel Convolution layer with a pointwise layer pro-
jecting from Cin into RGB channels (Cout) ( [20, 21, 40]).
In this setting, both Sub-Pixel Conv. and CUF-instantiated
have identical output layers, that is removed from our anal-
ysis. The number of multiplications performed by the
Sub-Pixel Convolution layer alone per target subpixel is:
Cin ∗ k ∗ k ∗Cin. Thus, the fraction of multiplications per-
formed by CUF-instantiated in relation to Sub-Pixel Convo-
lution can be expressed as: k2+Cin

k2∗Cin
= 1

Cin
+ 1

k2 . That is, the
decomposition has the desired effect of saving computation
whenever Cin, k > 1.

An alternative use of a Sub-Pixel Convolution layer is its
direct use as output layer. In this case, the three layers that
compose CUF’s upsampling head are compared to the full
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expansion convolution alone. Thus, the total operations per-
formed by CUF-instantiated is smaller that those performed
by Sub-Pixel Convolution whenever k2 + Cin + Cout <
k2 ∗ Cout.

In practice, the depthwise-pointwise decomposition
adopted by CUF-instantiated faces a memory drawback of
storing an extra feature map created in-between the decom-
position layers Cin (Figure 1). The reduction of such draw-
back with fused-convolutions is left as future work [1].

F. Qualitative comparisons
The difference between existent arbitrary-scale up-

samplers can only be observed at textured regions of the
image. In this section we disentangle the rule of the en-
coder and upsampler in the perceived quality of the results.
Figure 15 contain additional results, with non-integer scale
factors.
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Figure 13. Qualitative comparisons of arbitrary-scale super resolution methods using different encoders. Scale factor 4×
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Figure 14. Hard cases: Aliasing artifacts observed on hard cases. Our upsampler produces the sharper results. Scale factor 8×

LR ×1.5 ×2 ×2.5 ×3 ×3.5 ×4 ×4.5 ×5

LR
×1.5

×2
×2.5

×3
×3.5 ×4

×4.5
×5

LR ×1.5 ×2 ×2.5 ×3 ×3.5 ×4 ×4.5 ×5

Figure 15. Qualitative results using non-integer scales. Images from Set14 dataset.
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